SYNTHESIS AND STRUCTURE DETERMINATION OF FR109615, A NEW ANTIFUNGAL ANTIBIOTIC

Kohil Kawabata, Yoshiko Inamoto and Kazuo Sakane
New Drug Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6 Kashima, Yodogawa-ku, Osaka 532, Japan
Toshiro Iwamoto and Seji Hashimoto
Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 5-2-3 Tokodai, Tsukuba-shi, Ibaraki 300-26, Japan

(Received for publication December 6, 1989)

Abstract

The structure of FR109615, a new antifungal antibiotic, was determined to be ($1 R, 2 S$)-2-aminocyclopentane-1-carboxylic acid ($(-)$-cis-2-ACPC: 8a) by X-ray analysis. (-)-cis-2ACPC (8a) was also synthesized via optical resolution of 3a and 3b derived from (\pm)-cis-2-ACPC hydrochloride (1). 8a showed potent antifungal activity, while its antipode (+)-cis-2-ACPC (8b) had no activity.

FR109615 ${ }^{17}$, a new antifungal antibiotic, was isolated from Streptomyces setonii by our exploratory research laboratories ${ }^{\dagger, 2)}$ (Fig. 1). FR109615 exhibited excellent in vitro antifungal activity against Candida albicans. FR109615 has mp $195 \sim 196^{\circ} \mathrm{C}$ and $[\alpha]_{\mathrm{D}}^{20}-8.9^{\circ}\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)$, and its structure was elucidated as cis-2-aminocyclopentane-1-carboxylic acid (cis-2-ACPC), based on the spectroscopic data. Thus FR109615 has a simple and unique structure as compared with the known antifungal substances.

However, the absolute configuration of FR109615 was not reported. In this paper we describe the synthesis and absolute configuration of FR109615.

Fig. 1. Structure of FR109615.

cis-2-ACPC

We first synthesized both (-)-cis-2-ACPC (8a)
and (+)-cis-2-ACPC (8b) by optical resolution of a racemate, (\pm)-cis-2-ACPC hydrochloride (1) according to the route as shown in Scheme 1.

The starting material 1 was prepared by the procedure of Nativ and RONA ${ }^{3)}$. Esterification of 1 with thionyl chloride in methanol gave the methyl ester 2 in 93.2% yield, which was acylated with N-Boc-l-phenylalanine by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (WSCD) to afford the acylated compound 3 as a mixture of diastereomers. The separation of diastereomers 3 could be performed by fractional crystalizations to give the optical isomers 3a and 3b in yields of 18.7 and 30.1%, respectively. Next, Edman degradations ${ }^{4)}$ of each isomer $\mathbf{3 a}$ and $\mathbf{3 b}$ were carried out. Thus, the N-tert-butoxycarbonyl (Boc) groups of $\mathbf{3 a}$ and $\mathbf{3 b}$ were removed with hydrogen chloride in ethyl acetate to yield the phenylalanyl derivatives ($\mathbf{4 a}$ and $\mathbf{4 b}$) in 76.1 and 71.9% yield, respectively. Treatment of $\mathbf{4 a}$ and $\mathbf{4 b}$ with phenyl isothiocyanate gave the phenylthiocarbamoyl derivatives ($\mathbf{5 a}$ and $\mathbf{5 b}$) in 84.8 and 97.1% yield, respectively. The optical purities of both $\mathbf{5 a}$ and $\mathbf{5 b}$ were confirmed to be $>99 \%$ enantiomeric excess by HPLC analysis.

[^0]
Scheme 1.

Fig. 2. Stereoscopic views of $\mathbf{5 a}$ and $\mathbf{5 b}$.

5a

The absolute configurations of $\mathbf{5 a}$ and $\mathbf{5 b}$ were determined to be $(1 R, 2 S)$ and ($1 S, 2 R$), respectively, by X-ray crystallographic analysis (Fig. 2). Thus, the absolute configurations of (3a, 4a) and ($\mathbf{3 b}, \mathbf{4 b}$) were $(1 R, 2 S)$ and $(1 S, 2 R)$, respectively.

Optically active ($1 R, 2 S$)-2-ACPC ($\mathbf{8 a}$) and ($1 S, 2 R$)-2-ACPC ($\mathbf{8} \mathbf{b}$) were prepared by deprotection of the N-acyl group of $\mathbf{5 a}$ and $\mathbf{5 b}$ with hydrogen chloride, followed by acidic hydrolysis and desalting using an anion exchange resin. The optical purities of both $\mathbf{8 a}$ and $\mathbf{8 b}$ were determined to be $>99 \%$ enantiomeric excess by HPLC analysis. 8a has mp $199 \sim 200^{\circ} \mathrm{C}$ and $[\alpha]_{\mathrm{D}}^{20}-8.9^{\circ}\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right) .8 \mathrm{~b}$ has $\mathrm{mp} 198 \sim 199^{\circ} \mathrm{C}$ and $[\alpha]_{\mathrm{D}}^{20}+8.9^{\circ}\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)$. Since the natural product FR109615 was identical with ($1 R, 2 S$)-2-ACPC (8a) in all respects, the absolute configuration of FR 109615 could be assigned to be $(1 R, 2 S)$.

Antifungal Activity

MIC values of FR109615 (8a), (+)-cis-2-ACPC (8b), (\pm)-cis-2-ACPC (1) and (\pm)-trans-2-ACPC ${ }^{5)}$ (9) against Candida albicans and Candida tropicalis are summarized in Table 1.

Only FR109615 (8a) showed antifungal activity, and both its antipode $\mathbf{8 b}$ and (\pm)-trans-2-ACPC (9) had no activity. It was particularly interesting that the absolute configuration of 2-ACPC is closely correlated with displaying antifungal activity.

Further evaluation on FR109615 will be

Table 1. Antifungal activity of 2-ACPC derivatives (8a, $\mathbf{8 b}, 1$ and 9) against Candida albicans and Candida tropicalis.

Compound	MIC $(\mu \mathrm{g} / \mathrm{ml})$	
	C. albicans FP578	C. tropicalis FP583
FR109615 $((-)$-cis-2-ACPC $(\mathbf{8 a}))$	6.25	6.25
$(+)$-cis-2-ACPC $(\mathbf{8 b})$	>100	>100
(\pm)-cis-2-ACPC $(\mathbf{1})$	12.5	12.5
(\pm)-trans-2-ACPC $(\mathbf{9})$	>100	>100

Experimental

MP's were determined using a Thomas-Hoover capillary melting apparatus and are uncorrected. IR spectra were taken on a Hitachi 260-10 spectrophotometer. Optical rotations were measured with a Jasco DIF-140 automatic polarimeter. NMR spectra were recorded at 90 MHz on a Varian EM-390 NMR spectrometer or a Hitachi R-90H NMR spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ (in CDCl_{3} and DMSO- d_{6}) and sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) (in $\mathrm{D}_{2} \mathrm{O}$) as an internal standard.

Antifungal Activity

MICs were determined by the agar dilution method using minimum essential medium (MEM) agar after incubation at $37^{\circ} \mathrm{C}$ for 18 hours with inoculum size of about $10^{6} \mathrm{cfu} / \mathrm{ml}$.

Methyl (\pm)-cis-2-Aminocyclopentane-1-carboxylate Hydrochloride (2)

Thionyl chloride (13 ml) was added dropwise to methanol (50 ml) at $-15 \sim-5^{\circ} \mathrm{C}$, and stirred at the same temperature for 10 minutes. To this solution was added (\pm)-cis-2-ACPC hydrochloride ${ }^{3}$) $(\mathbf{1})(5 \mathrm{~g}$, 30.2 mmol) at $-10^{\circ} \mathrm{C}$. After being stirred at room temperature for 1.5 hours, the reaction mixture was evaporated in vacuo to give $5.05 \mathrm{~g}\left(93.2 \%\right.$) of 2 as colorless crystals: MP $120 \sim 123^{\circ} \mathrm{C}$; IR (Nujol) cm^{-1} $1715,1595,1555 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.68 \sim 2.32\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 3.11 \sim 3.33(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.82 \sim 4.02(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$.

$$
\begin{array}{ll}
\text { Anal Calcd for } \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{ClNO}_{2}: & \text { C } 46.80, \mathrm{H} 7.85, \mathrm{Cl} 19.73, \mathrm{~N} 7.80 . \\
\text { Found: } & \text { C } 46.39, \mathrm{H} 7.64, \mathrm{Cl} 19.32, \mathrm{~N} 7.76 .
\end{array}
$$

Fractional Crystallizations of Methyl (\pm)- N-(Boc-L-phenylalanyl)-cis-2-aminocyclopentane-1-carboxylate (3a, 3b)

To a suspension of $2(15 \mathrm{~g}, 83.5 \mathrm{mmol})$ in dichloromethane $(200 \mathrm{ml})$ was added Boc-L-phenylalanine
($22.15 \mathrm{~g}, 83.5 \mathrm{mmol}$) and 1-hydroxybenzotriazole $(11.28 \mathrm{~g}, 83.5 \mathrm{mmol}$) at room temperature. To this mixture was added dropwise 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide ($14.26 \mathrm{~g}, 91.85 \mathrm{mmol}$) under ice-cooling, and the mixture was stirred at the same temperature for 30 minutes. The reaction mixture was poured into water, and the separated organic layer was washed with water, 5% sodium bicarbonate solution and brine, and dried over magnesium sulfate. The organic solvent was evaporated in vacuo, and the residue was dissolved in EtOAc $(90 \mathrm{ml})$ at $60 \sim 70^{\circ} \mathrm{C}$. The solution was allowed to stand at room temperature for 15 hours. The resulting precipitate was collected by filtration to give $9.8 \mathrm{~g}(30.1 \%)$ of $\mathbf{3 b}$ as colorless crystals: MP $132 \sim 134^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+45.6^{\circ}\left(c 1.0, \mathrm{EtOH}\right.$); IR (Nujol) $\mathrm{cm}^{-1} 3330,3310,1715$, 1680,$1640 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28 \sim 2.03\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 1.41\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 2.78 \sim 3.14(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 3.01\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.12 \sim 4.55(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}+\mathrm{CHCH} 2), 5.11(1 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 6.21(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 7.27(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

```
Anal Calcd for C21 H30 N2 O
    Found: C 64.63, H 7.56, N 7.22.
```

The filtrate was evaporated in vacuo, and the residue was dissolved in ether (150 ml) under reflux. The solution was left at room temperature for 15 hours, and the resulting precipitate was collected by filtration to give $6.1 \mathrm{~g}(18.7 \%)$ of 3 a as colorless crystals: MP $112 \sim 115^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-63.0^{\circ}(c 1.0, \mathrm{EtOH})$; IR (Nujol) $\mathrm{cm}^{-1} 3350,3330,1730,1670,1650 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.41\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48 \sim 2.18(6 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.78 \sim 3.08(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.04\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.18 \sim 4.58(2 \mathrm{H}$, $\left.\mathrm{m}, 2-\mathrm{H}+\mathrm{CHCH}_{2}\right), 4.97(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 7.24(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.
$\begin{array}{ll}\text { Anal Calcd for } \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}: & \text { C } 64.60, \mathrm{H} 7.74, \mathrm{~N} 7.17 . \\ \text { Found: } & \text { C } 64.63, \mathrm{H} 7.56, \mathrm{~N} 7.22 .\end{array}$

Methyl ($1 R, 2 S$)- N-(L-Phenylalanyl)-2-aminocyclopentane-1-carboxylate (4a)
3a ($0.5 \mathrm{~g}, 1.28 \mathrm{mmol}$) was added to 4 N hydrogen chloride in EtOAc (1.5 ml) at room temperature, and the mixture was stirred at the same temperature for 15 minutes. The mixture was adjusted to pH 7 with 5% sodium bicarbonate solution, and the resulting precipitate was collected by filtration to give $0.283 \mathrm{~g}\left(76.1 \%\right.$) of $4 \mathrm{a}: \mathrm{MP} 96 \sim 101^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-119.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$) ; IR (Nujol) $\mathrm{cm}^{-1} 3310,1730,1650$, 1530; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 1.30 \sim 2.03\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.76 \sim 3.20\left(5 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}+\mathrm{NH}_{2}+\mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.25 \sim 3.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.10 \sim 4.52(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.22(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.78(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}, \mathrm{NH}$).

Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \frac{1}{10} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 65.78, \mathrm{H} 7.66, \mathrm{~N} 9.59$.
Found: \quad C 65.73, H 7.61, N 9.54.
Methyl ($1 S, 2 R$)- N-(L-Phenylalanyl)-2-aminocyclopentane-1-carboxylate (4b)
$\mathbf{3 b}(60 \mathrm{~g}, 0.154 \mathrm{~mol})$ was added to 4 N hydrogen chloride in EtOAc (180 ml) at room temperature. The mixture was stirred at the same temperature for 15 minutes, and thereto was added EtOAc (900 ml). The mixture was washed with 5% sodium bicarbonate solution and brine, and dried over magnesium sulfate. The organic solvent was evaporated in vacuo to give $32.1 \mathrm{~g}(71.9 \%)$ of $\mathbf{4 b}$ as colorless crystals: MP $72 \sim 74^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+75.0^{\circ}(c 1.0, \mathrm{EtOH}) ;$ IR (Nujol) $\mathrm{cm}^{-1} 3400,3310,1730,1640,1505 ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $1.31 \sim 2.19\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{NH}_{2}\right), 2.41 \sim 2.62(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.82 \sim 3.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.28 \sim 3.42(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{2}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.08 \sim 4.38(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.21(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.70(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH})$.

Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \quad \mathrm{C} 66.19, \mathrm{H} 7.64, \mathrm{~N} 9.65$.
Found: \quad C 66.26, H 7.52, N 9.58 .
Methyl (1R,2S)- N-(N-Phenylthiocarbamoyl-L-phenylalanyl)-2-aminocyclopentane-1-carboxylate (5a)
To a solution of $4 \mathrm{a}(12.79 \mathrm{~g}, 44.1 \mathrm{mmol})$ in $\mathrm{EtOH}(38 \mathrm{ml})$ was added phenyl isothiocyanate (7.51 ml , 66.07 mmol) at room temperature. The mixture was refluxed with stirring for 1 hour, and cooled to room temperature. The resulting precipitate was collected by filtration to afford $15.9 \mathrm{~g}(84.8 \%)$ of 5 a as colorless crystals: MP $171 \sim 172^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{23}-66.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (Nujol) $\mathrm{cm}^{-1} 3320,1715,1645,1630 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 1.33 \sim 2.11\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.61 \sim 3.28\left(3 \mathrm{H}, 1-\mathrm{H}+\mathrm{CH}_{2} \mathrm{Ph}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.15 \sim 4.52$ $\left.(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.95 \sim 5.29(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH})_{2}\right), 6.95 \sim 7.43(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2), 7.52(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 8.09$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 9.66(1 \mathrm{H}, \mathrm{br}$ s, NH).

Anal Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C 64.92, H 6.39, N 9.87, S 7.53.
Found: \quad C 65.00, H 6.55, N 9.83, S 7.56.

Methyl (1S,2R)-N-(N-Phenylthiocarbamoyl-L-phenylalanyl)-2-aminocyclopentane-1-carboxylate ($\mathbf{5 b}$)
To a suspension of $4 \mathbf{a}(30 \mathrm{~g}, 0.103 \mathrm{~mol})$ in ether (60 ml) was added phenyl isothiocyanate (17.61 ml , 0.155 mol) at room temperature. The mixture was refluxed with stirring for 1 hour, and thereto was added diisopropyl ether (120 ml) at room temperature. The resulting precipitate was collected by filtration to give $42.7 \mathrm{~g}(97.1 \%)$ of $5 \mathbf{5 a}$ as colorless crystals: MP $125 \sim 127^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+16.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR (Nujol) cm^{-1} 3290, 1735, 1710, 1675, 1660; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.27 \sim 2.07\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.78 \sim 3.18(3 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{H}+\mathrm{CH}_{2} \mathrm{Ph}\right), 3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.08 \sim 4.47(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.93 \sim 5.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 6.91 \sim 7.59(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph} \times 2), 7.60(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 8.02(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{NH}), 9.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

Anal Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}: \quad \mathrm{C} 64.92$, H 6.39 , N 9.87 , S 7.53 .
Found: \quad C 64.76, H 6.49, N 9.81, S 7.47.

($1 R, 2 S$)-2-Aminocyclopentane-1-carboxylic Acid Hydrochloride (7a)

$5 \mathrm{a}(5 \mathrm{~g}, 11.75 \mathrm{mmol})$ was added to 4 N hydrogen chloride in dichloromethane (25 ml) at room temperature. After being stirred at the same temperature for 15 minutes, the mixture was poured into a mixture of dichloromethane $(15 \mathrm{ml})$ and water $(15 \mathrm{ml})$. The separated aq layer was washed with dichloromethane (45 ml), and thereto was added concd hydrochloric acid (15 ml). The aq solution was warmed to $70^{\circ} \mathrm{C}$ for 1 hour, and evaporated in vacuo to dryness. To the residue was added acetone (30 ml), and the mixture was stirred under ice-cooling for 10 minutes. The resulting precipitate was collected by filtration to give $1.88 \mathrm{~g}(96.7 \%)$ of $7 \mathrm{a}: \mathrm{MP} 156 \sim 157^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-6.5^{\circ}\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)$; IR (Nujol) $\mathrm{cm}^{-1} 3350$, $3250,1710,1640,1590,1500 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.48 \sim 2.43\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.90 \sim 3.33(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $3.67 \sim 4.03(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \frac{3}{5} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 40.85, \mathrm{H} 7.55, \mathrm{Cl} 20.09$, N 7.93 .
Found:
C 40.98 , H $7.63, \mathrm{Cl} 19.58, \mathrm{~N} 7.97$.
(1S,2R)-2-Aminocyclopentane-1-carboxylic Acid Hydrochloride (7b)
$\mathbf{7 b}$ was obtained (83.3%) from $\mathbf{5 b}$ in a similar manner to that as described for the synthesis of $\mathbf{7 a}$: MP $156 \sim 157^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-6.5^{\circ}\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right.$); IR (Nujol) $\mathrm{cm}^{-1} 3360,3230,1715,1650 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) δ $1.52 \sim 2.33\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.81 \sim 3.33(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.72 \sim 4.01(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \frac{3}{5} \mathrm{H}_{2} \mathrm{O}: \quad$ C $40.85, \mathrm{H} 7.55, \mathrm{Cl} 20.09, \mathrm{~N} 7.93$.
Found: \quad C 40.86, H 7.53, Cl 19.92, N 8.00.

($1 R, 2 S$)-2-Aminocyclopentane-1-carboxylic Acid ($\mathbf{8 a}$)

A solution of $7 \mathrm{a}(25 \mathrm{~g}, 0.151 \mathrm{~mol})$ in water $(125 \mathrm{ml})$ was adjusted to pH 6.7 with an anion exchange resin Diaion SA10A $\left(\mathrm{OH}^{-}\right)$at room temperature. The resin was filtered off, and the filtrate was evaporated in vacuo to dryness. To the residue was added $\mathrm{EtOH}(125 \mathrm{ml})$ and diisopropyl ether $(250 \mathrm{ml})$ with stirring under ice-cooling. The resulting precipitate was collected by filtration to give $16.12 \mathrm{~g}(82.7 \%)$ of $\mathbf{8 a}$ as colorless crystals: MP $199 \sim 200^{\circ} \mathrm{C}$ (dec); [$\left.\alpha\right]_{\mathrm{D}}^{20}-8.9^{\circ}$ (c 1.0, $\mathrm{H}_{2} \mathrm{O}$); IR (Nujol) $\mathrm{cm}^{-1} 2950,2200,1640$, $1550 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.52 \sim 2.30\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.67 \sim 3.05(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.47 \sim 3.87(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2}:$ C $55.80, \mathrm{H} 8.58$, N 10.84.
Found: \quad C 55.52, H 8.44, N 10.65.
FR109615 was identical with 8a in all respects.
(1S,2R)-2-Aminocyclopentane-1-carboxylic Acid (8b)
$\mathbf{8 b}$ was obtained (83.3%) from $\mathbf{7 b}$ in a similar manner to that as used for the synthesis of 8a: MP $198 \sim 199^{\circ} \mathrm{C}(\mathrm{dec}) ;[\alpha]_{\mathrm{D}}^{20}+8.9^{\circ}\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)$; IR (Nujol) $\mathrm{cm}^{-1} 1640,1540,1460 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) δ $1.57 \sim 2.18\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.71 \sim 2.99(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.57 \sim 3.82(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \frac{1}{20} \mathrm{H}_{2} \mathrm{O}: \quad$ C $55.41, \mathrm{H} 8.60, \mathrm{~N} 10.77$.
Found: \quad C 55.43, H 8.59, N 10.67.

Acknowledgments
We thank Dr. T. Kamimura for providing the biological data and Drs. S. Kohda and T. Tada for X-ray crystallographic analysis, HPLC analysis and physical measurements.

References

1) Ifamoto, T.; E. Tsumi, M. Ezaki, A. Fuife, S. Hashimoto, M. Okuhara, M. Kohsaka, H. Imanaka, K. Kawabata, Y. Inamoto \& K. Sakane: FR109615, a new antifungal antibiotic from Streptomyces setonii. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J. Antibiotics 43: 1~7, 1990
2) Oki, T.; M. Nishio, K. Saitoh, M. Hirano, T. Miyaki, M. Konishi \& H. Kawaguchi: Cispentacin, a new antifungal antibiotic. Chemistry and biological activity. Program and Abstracts of the 29th Intersci. Conf. on Antimicrob. Agents Chemother. No. 716, p. 221, Houston, Sept. 17~20, 1989
3) Nativ, E. \& P. Rona: 2-Azabicyclo[3.2.0]heptane-3-one. Isr. J. Chem. 10: 55~58, 1972
4) Edman, P.: Method for determination of the amino acid sequence in peptides. Acta Chem. Scand. 4: 283~293, 1950
5) Plieninger, H. \& K. Schneider: Die Analagerung von Ammoniak an Δ^{1}-Tetrahydrobenzoesäure und Cyclopenten-(1)-carbon-säure-(1) und die eindeutige sterische Zuordung der entstehenden β-Aminosäuren. Chem. Ber. 92: 1594~1599, 1959

[^0]: \dagger Bristol-Myers group has recently found an antibiotic identical to FR109615, which they called cispentacin.

